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Abstract: A new method is presented for nonempirical SCF-LCAO-MO calculations on molecules containing 
third-row atoms. Diagonal Fock Hamiltonian (F) matrix elements (a's) are calculated from accurate one-electron 
integrals, and from two-electron integrals which are calculated accurately or are obtained from the Ruedenberg 
approximation. Finite overlap off-diagonal F-matrix elements are calculated using parameters obtained from 
model SCF calculations on chemically similar small molecules, and a new algorithm is presented for zero-overlap 
elements, a's for core orbitals are approximated by a simple formula requiring only one-center integrals, all elec­
trons are included, and the self-consistent-field equations are solved. Results are compared with those from ab 
initio SCF calculations, among which are those reported here for a series of diatomic hydrides, oxides, and fluorides 
of the elements from Co to Ge. A molecular orbital calculation on the ground state of the hypothetical square-
planar ion CuF4

2- (2B18) employing the above approximate method is presented and compared with previous cal­
culations and with experimental results on related compounds. 

The Hartree-Fock approximation has given reason­
able results for transition metal atoms1 and mole­

cules.2-4 In the LCAO-MO form, its application is 
restricted to small molecules, using small basis sets. 
The extended Huckel (EH) method,5* when used with 
care,6b has given good results for large molecules. 
The principal restriction on LCAO-MO calculations is 
the amount of time required to calculate the two-electron 
integrals. The approximation of Slater-type orbitals 
as linear combinations of Gaussians6 has reduced this 
difficulty for small molecules, but since the number of 
intergrals increases as the fourth power of the size of 
the basis set, SCF calculations on large molecules are 
still prohibitively expensive. Molecules containing 
transition metal atoms are particularly difficult because 
of the large number of orbitals needed to describe the 
transition metal itself. 

An examination of the logical foundation of the EH 
theory has yielded nonempirical molecular orbital 
(NEMO I and II) methods in which diagonal matrix 
elements of the Fock Hamiltonian are transferred 
directly from SCF calculations on small model com­
pounds to larger molecules, and off-diagonal elements 
are calculated using parameters from these same model 
calculations.7 Self-consistency was not explicitly re­
quired. Three differences are immediately apparent 
between the transition elements compounds of interest 
in this study and the compounds treated by these 
earlier theories:7 (1) the former frequently contain 
highly charged atoms, (2) the compounds themselves 

(1) (a) C. R. Claydon and K. D. Carlson, / . Chem. Phys., 49, 1131 
(1968); (b) E. Clementi, "Tables of Atomic Functions," a supplement to 
IBM J. Res. Develop., 9, 2 (1965); (c) E. Clementi and D. L. Raimondi, 
/ . Chem. Phys., 38, 2686 (1963). 

(2) (a) K. D. Carlson, E. Ludena, and C. Moser, ibid., 43, 2408 
(1965); (b) K. D. Carlson and C. Moser, ibid, 44, 3259 (1966); (c) K. D. 
Carlson and C. Moser, ibid., 46, 35 (1967). 

(3) P. E. Stevenson and W. N. Lipscomb, ibid., 52, 5343 (1970). 
(4) P. E. Stevenson and W. N. Lipscomb, ibid., 50, 3306 (1969). 
(5) (a) R. Hoffmann and W. N. Lipscomb, ibid., 36, 2179, 3489 

(1962); (b) M. Zerner and M. Gouterman, Theor. Chim. Acta, 4, 44 
(1966). 

(6) W. J. Hehre, R. F. Stewart, and J. A. Pople, / . Chem. Phys., 51, 
2657 (1969). 

(7) (a) M. D. Newton, F. P. Boer, and W. N. Lipscomb, J. Amer. 
Chem. Soc, 88, 2353 (1966), and following papers; (b) D. B. Boyd and 
W. N. Lipscomb, / . Chem. Phys., 48, 4955 (1968). 

are often charged, and (3) their ground and excited 
states are often open shells. 

An earlier analysis of several third-row metal hy­
dride, oxide, and fluoride SCF calculations showed 
substantially transferability of constants (K) in the 
NEMO formalisms.3 However, serious difficulties ap­
peared in the diagonal and zero-overlap off-diagonal 
elements. Also, earlier NEMO results on C3H4 (i.e., 
CH3CCH) suggested that although the method gave 
good energy eigenvalues, charge distributions were 
poorly reproduced,8 due in part to the failure of the 
formalism to allow fine adjustments in the a's when 
transferred from one molecule to another. Even those 
self-consistent methods which give poorer energy 
eigenvalues might be expected to give better charge 
distributions than did the earlier NEMO theories, 
because self-consistent adjustment of the a's of orbitals 
on various atoms was allowed. This expectation 
should be particularly relevant to highly charged transi­
tion element complexes. The addition or removal of 
electrons from a neutral complex might be expected 
to change the a's quite drastically, as exemplified by a 
comparison of a values for TiH3

+ and TiH3F.4 Fi­
nally, the earlier NEMO methods have not been readily 
applicable to the open shells present in many transition 
metal compounds.9 Indeed, a method of at least the 
complexity of Pople's INDO10 theory is required if one 
wishes to consider open shells, since CNDO-level 
theories11 ignore important one-center exchange inte­
grals which are necessary to give the separation of dif­
ferent states arising from the same electronic configura­
tion. These features are included below in a self-
consistent theory which is designated as NEMO III. 

Proposed Method 

Summary. The method may be summarized as 
follows. The two-center nuclear attraction, two-center 
Coulomb, and two-center exchange integrals, and those 

(8) M. D. Newton and W. N. Lipscomb, J. Amer. Chem. Soc, 89, 
4261 (1967). 

(9) P. Ros and G. C. A. Schuit, Theor. Chim. Acta, 4, 1 (1966). 
(10) J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys., 

47, 2026 (1967). 
(11) J. A. Pople, D. P. Santry, and G. A. Segal, ibid., 43, 5129 

(1965). 
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one-center integrals which contribute to the diagonal 
elements, are calculated accurately. All other integrals 
are obtained by the Ruedenberg approximation12 and 
the a's are constructed directly from the integrals and 
the molecular density matrix. The finite-overlap off-
diagonal elements of the potential energy are obtained 
from a modified Mulliken relation (eq 4), and the 
kinetic energy elements are calculated accurately. The 
core a's are approximated simply, and changes in the 
core orbital elements of the density matrix are ignored 
in the self-consistent process. 

Matrix Elements. In the SCF-LCAO-MO theory, 
the MO's are expressed as 

H = £ 01 cB, 

where / is a Slater-type orbital (STO) and the CmJ's are 
the coefficients of the molecular orbitals. Minimiza­
tion of the molecular energy with respect to the varia­
tion of the Cmi's yields the matrix equation 

FC1 = etSCt (1) 

where F is the Fock matrix and S the overlap matrix. 
The matrix elements of the Fock operator are Fti = 
(i\T+ V+ R\j) where T, V, and R are the kinetic energy, 
nuclear attraction, and electron repulsion operators, 
respectively. Explicitly, the Fock matrix elements for 
closed shells are 

Fi} = Ti} + Z(VIZAZ1A"1) + 

E(OyI*/) - o.5(ik\ji)}p*i (2) 
k,l 

The diagonal elements involve one- and two-center 
nuclear attraction integrals and one-, two-, and three-
center electron repulsion integrals. The two- and 
three-center integrals are difficult to calculate; more­
over, large numbers of them are required. We have 
chosen to calculate only some of them accurately and to 
approximate the rest with a formula due to Ruedenberg. 
We shall show that in order to obtain results quanti­
tatively similar to ab initio SCF results we must calcu­
late anisotropically and accurately the two-center 
Coulomb and exchange integrals O A ' A ' A A ) and OAJBI 
IAJB), where iA includes all of the components of a 
degenerate orbital i on atom A. Approximate two-
and three-center integrals are obtained from the Rueden­
berg formula 

(u\ki) = 0 .5SSK"! WS(fc«, I0) + 

(HlWS(KJe)] (3) 

where a and /3 range over all components of an orbital 
having a given n and /. This formula is essentially a 
generalization of Mulliken's formula, (ii\kl) = 0.5Sj»-
{(ii\kk) + (n|//)}- Such a generalization is required in 
order to preserve rotational invariance. Since the 
summations go only over the components of an orbital 
with a given n and /, the method is not invariant to 
hybridization. 

Off-diagonal potential energy (UMATRIX) elements 
for which Stj is nonzero are not calculated explicitly 
from the integrals but are obtained from the diagonal 
elements using a modified5 Mulliken relation 

Vu = ktjStj(Uit + U11)Il (4) 

(12) K. Ruedenberg,/. Chem.Phys., 19, 1433 (1951). 

where each Oit is averaged over its components and all 
Ty's are calculated accurately. 

Off-diagonal elements between orbitals whose over­
lap St1 is zero cannot be obtained from (4). These 
zero-overlap (ZO) FMATRIX elements were calcu­
lated from the complicated formula 

FUH = £ £ 1OAAI^AA) - 0.5(iAfcA|yA/A)p*AlA} -
* i 

0.5{E0'A'A|7A^B)PUSB ~ £ ( A A | ' V B ) P M ! B ! + 
k 

EOAAIrB-1XZB' - E ^ m C m } (5) 
B^A monB 

which is discussed in Appendix A. 
Two further simplifications have been made in our 

calculations. First, between those atoms which are 
not nearest neighbors, two-center exchange integrals 
have been ignored, and Coulomb integrals have been 
averaged over components. Second, a simple method 
has been used for obtaining core a's. Previous 
methods have ignored changes in the diagonal elements 
for core orbitals but since these changes are quite 
large,4 accurate reaction energies could not be obtained. 
Also, these a's are dependent upon the molecular 
charge distribution and so must be obtained from the 
charge distribution at each iteration. The formula 
which we used was developed by Manne13 

FMk = F0UU + £{(«|yy) - 0.507[/7)! X 

HereP;Ais the gross atomic orbital population(GAOP) of 
orbital j A , QB is the Mulliken charge of atom B, and 
F°u(A is the free-atom a. A neighboring neutral atom 
gives no contribution. Thus, this formula ignores 
what is often called the neutral penetration term, which 
is related to the difference between ( /A 'A!^ - 1 ) and 
O'A'AIJBJB) - 0 .5OAA A A ) . We find that for the inner 
shells of the first transition metals this error is not too 
large and is nearly constant for the various core orbitals. 
For hydrocarbons, the error is considerably more 
serious and produces errors as large as 0.15 au. In 
addition to allowing the calculation of reaction energies, 
we hope that accurate inner-shell eigenvalues will be 
useful for comparison with photoelectron spectroscopic 
results.14 

Since core electrons are not included explicitly in 
the calculation of valence a's, we must correct the two-
center nuclear attraction terms for their presence. All 
density matrix elements between the core and valence 
orbitals are ignored, so the nuclear charge is corrected to 

Z 3 ' = Z B - £ a B P a B - E P ( A B , ' B ) - S ( O B . IB) 
aii.lB 

where a is a core orbital on B, i is a valence orbital, 
and P08 starts at the free-atom GAOP of aB but is re­
evaluated at each iteration. 

The above equations are used to calculate the various 
FMATRIX elements at each iteration from the molecu­
lar density matrix. The complete Hamiltonian is di-
agonalized at each step because the diagonalization 
of only the valence-valence block (even when trans-

(13) R. Manne, Theor. Chim. Acta, 6, 299 (1966). 
(14) (a) L. N. Kramer and M. P. Klein, Chem. Phys. Lett., 8, 183 

(1971); (b) R. Manne, / . Chem. Phys., 46, 4695 (1967). 
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formed to Hartree-Fock AO's) leads to substantial 
error.15 Self-consistency is considered to be obtained 
when the average variation in a from one cycle to the 
next is 0.002 au. 

Molecular Energies. Both the one-electron and 
two-electron parts of the computed FMATRIX con­
tain approximations. However, computational ad­
vances have made it possible to calculate the complete 
VMATRIX from accurate values of integrals, including 
all three-center integrals. The total electronic energy 
can then be evaluated explicitly as 722IiOi + H1), 
where 17 < is the occupation number of orbital /. Thus 
advances in computational technique for multicentered 
integrals have improved earlier methods' for approxi­
mating total energies, binding energies, and virial ratios. 

Transformed Integrals over Molecular Orbitals and 
Open Shells. The difference in energies of various 
electronic configurations of molecules can be expressed 
by combinations of eigenvalue differences and Coulomb 
and exchange integrals over MO's. The accurate 
calculation of the two-center Coulomb and exchange 
intergrals over AO's permits us to obtain both Coulomb 
and exchange integrals over MO's to reasonable ac­
curacy, and thus to distinguish between states of differ­
ent multiplicity. The approximate formula we shall 
employ is 

D(m, n) = Y,P(m, i){ii\jj)P{n,j) = (mm\nn) 

X(m, n) = Y,P(m, i)(ij\ij)P(n, j) = (mn\mn) 
i,3 

where P(m, i) is the Mulliken population of AO i in 
MO m. This simple formula will give rotationally in­
variant results if the (ii, jj) and ((/"[//) are averaged over 
components having the same n and /. The two-electron 
integrals can then be used to calculate term energy dif­
ferences and in the calculation of second-order magnetic 
properties by Hartree-Fock perturbation theory. 

At present we employ a version of Nesbet's sym­
metry and equivalence restrictions for open shells.16 

The diagonal elements Fu are corrected for the presence 
of unpaired spin by subtracting -1IiXjQjIiJ)P/, where 
Pf is the GAOP in orbital j of unpaired (3 spin. This 
procedure is rotationally invariant if the two-center 
exchange integrals are averaged. This formula then 
gives the correct interactions of the open-shell electron 
with itself, and thus probably the best energy.16 The 
open-shell Hartree-Fock energy is obtained by adding 
certain MO exchange integrals to the zero-order energy. 
When corrected by the appropriate MO exchange inte­
grals, the results of different averaging methods in a 
symmetry and equivalence restricted calculation23 on 
the open a shell molecule ScO produced almost identi­
cal eigenvectors and energies (equal to within 1O-5 au). 
Thus we hope that different methods of averaging the 
FMATRIX interactions will produce only small dif­
ferences for our approximate calculations. Recent 
calculations by Moskowitz, et al., have suggested that 
restricted Hartree-Fock methods may give results 
similar in accuracy to those of the unrestricted method, 
even for some spin-dependent properties.17 

(15) J. A. Tossell, Ph.D. Thesis, Harvard University, 1971. 
(16) R. K. Nesbet and R. E. Watson, Ann. Phys. (New York), 9, 

260 (1960). 
(17) J. W. Moskowitz, C. Hollister, C. J. Hornback, and H. Basch, 

/ . Chem. Phys., 53, 2570 (1970). 

Discussion of Method 

Discussion of Approximations for Diagonal Elements. 
In this section we shall test various approximations for 
two-center integrals by calculating diagonal FMATRIX 
elements (as) directly from ab initio SCF density 
matrices. The results will suggest how the present 
method (NEMO III) was obtained. 

Many workers have shown the correspondence of the 
use of the symmetrical Mulliken approximation of two-
electron integrals to the various NDO methods within 
a Lowdin OAO basis.18 We have attempted to repro­
duce ab initio SCF results using methods similar to the 
INDO and NDDO methods.1011 In Table I we pre-

Table I. Simulation of SCF Results on C3H4 and TiH3F 
Using Different Treatments of Two-Center Integrals 

•Fa-

IC 2s 
IC 2p„ 
lC2 P ? r 

2C2s 
2 C 2 p , 
2C2p T 

3C2s 
3C2p„ 
3C2 P l r 

H4 

H = ,6,7 

SCF 

- 1 . 4 4 
- 0 . 7 3 3 
- 0 . 1 5 7 
- 1 . 4 9 0 
- 0 . 8 2 4 
- 0 . 1 8 0 
- 0 . 5 0 3 
- 0 . 4 6 1 
- 0 . 4 0 0 
- 0 . 5 5 3 
- 0 . 5 2 3 

I 

C3H, 
- 1 . 5 5 6 
- 0 . 5 1 1 
- 0 . 4 7 5 
- 1 . 4 9 0 
- 0 . 4 7 2 
- 0 . 4 5 3 
- 1 . 5 0 3 
- 0 . 2 9 5 
- 0 . 3 3 6 
- 0 . 5 5 3 
- 0 . 5 2 3 

II 

i 

- 1 . 5 5 6 
- 1 . 1 1 3 
- 0 . 1 7 5 
- 1 . 4 7 8 
- 1 . 2 5 2 
- 0 . 0 6 3 
- 1 . 5 6 4 
- 0 . 5 5 5 
- 0 . 2 0 6 
- 0 . 5 5 5 
- 0 . 5 2 5 

III 

- 1 . 5 5 9 
- 0 . 7 4 0 
- 0 . 3 6 4 
- 1 . 4 8 5 
- 0 . 7 1 8 
- 0 . 3 3 6 
- 1 . 5 6 3 
- 0 . 3 2 7 
- 0 . 3 2 5 
- 0 . 5 5 8 
- 0 . 5 2 8 

IV 
(NEMO 

III) 

- 1 . 4 8 9 
- 0 . 7 3 5 
- 0 . 1 5 8 
- 1 . 5 3 2 
- 0 . 8 1 9 
- 0 . 1 7 8 
- 1 . 5 5 8 
- 0 . 3 9 8 
- 0 . 3 4 7 
- 0 . 5 4 7 
- 0 . 5 1 4 

9(1C) 
9(2C) 
9(3C) 
9(H4) 
9(H.„6.7) 

Ti 3d,* 
Ti 3d« 
Ti 3d,'.,,! 
Ti 4s 
T i4p 2 

T i 4 p . 
F 2s 
F2p* 
F 2 p x 

— 
— 
— 

0.020 
0.019 
0.067 

- 0 . 4 7 6 
- 0 . 2 0 6 
- 0 . 1 4 2 
- 3 . 0 0 4 
- 0 . 4 3 3 
- 0 . 4 3 5 

SCF 
0.229 -
0.034 -
0.405 -
0.180 
0.163 

III 
0. 
0. 
0. 
0. 

634 
361 
164 
170 

0.089 

TiH3F 
0.034 
0.091 
0.069 

- 0 . 5 0 8 
- 0 . 1 9 3 
- 0 . 2 2 5 
- 2 . 9 8 7 
- 0 . 3 5 9 
- 0 . 5 2 1 

NEMO 
- 0 . 206 
- 0 . 0 5 8 
- 0 , 

0. 
0 

0.069 
0.067 
0. 

- 0 . 
- 0 . 

143 
510 
513 

- 0 . 0 6 5 
- 2 . 987 
- 0 . 4 8 0 
- 0 . 4 6 0 

342 
156 

.117 

0.028 
0.089 
0.068 

- 0 . 5 1 1 
- 0 . 1 6 9 
- 0 . 1 5 0 
- 2 . 9 9 8 
- 0 . 4 6 9 
- 0 . 4 7 1 

0.018 
0.092 
0.066 

- 0 . 5 1 0 
- 0 . 2 1 7 
- 0 . 1 3 9 
- 3 . 0 0 0 
- 0 . 4 6 9 
- 0 . 4 7 0 

sent a's for C3H4 and TiH3F calculated (I) by averaging 
two-center Coulomb integrals, nuclear attraction inte­
grals, and exchange integrals; (II) by averaging two-
center Coulomb and exchange integrals and retaining 
nuclear attraction integral anisotropies; (III) by re­
taining anisotropies in nuclear attraction and two-center 
Coulomb integrals and averaging exchange integrals; 
and (IV) by retaining anisotropies in all three types of 
two-center integrals (proposed method above). 
Methods I and III correspond closely to the INDO and 
NDDO methods. The first three methods produce 
substantial errors in the anisotropies of the a's. The 
INDO approach gives good results for GaH3 (not re­
ported here), where Coulomb integral anisotropies 
balance exchange integral anisotropies. In molecules 

(18) (a) J. P. Dahl and C. J. Ballhausen, Advan. Quantum Chem., 4, 
170 (1968); (b) B. J. Nicholson, Advan. Chem. Phys., 18 249 (1970); 
(c) R. D. Brown and K. R. Roby, Theor. Chim. Acta, 16, 175, 194, 278, 
291 (1970). 
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Table II. Fy by Various Approximations 

IH Is, 2H Is 
IH Is, 3d2* 
IH Is, 4s 
IH Is, 4px 

IH Is, 3drf_„s 

IH Is, 2H Is 
IH Is, 3d2* 
IH Is, 4s 
IH, Is, 4 P l 

F 2s, 4s 
F spz, 4s 

SCF 

- 0 . 0 7 8 
0.048 

- 0 . 4 0 5 
- 0 . 3 7 4 
- 0 . 0 7 9 

- 0 . 0 8 0 
0.074 

- 0 . 3 2 1 
- 0 . 2 5 7 
- 0 . 5 8 6 

0.119 

I W 6 

GaH3" 
- 0 . 0 7 8 

0.046 
- 0 . 4 0 7 
- 0 . 3 7 2 
- 0 . 0 8 1 

TiH3F 
- 0 . 0 8 0 

0.079 
- 0 . 3 2 3 
- 0 . 2 5 0 
- 0 . 5 8 6 

0.119 

II 
(Kn/Kv) 

- 0 . 0 8 0 
0.048 

- 0 . 4 2 5 
- 0 . 4 4 1 
- 0 . 0 8 4 

III 
(direct) 

- 0 . 1 5 8 
0.030 

- 0 . 4 7 4 
- 0 . 3 1 5 
- 0 . 0 6 8 

- 0 . 0 9 5 
0.030 

- 0 . 3 0 4 
- 0 . 2 8 1 
- 0 . 7 8 5 

0.260 

' GaH3 and TiH3F results are from ref 3 and 4. »IH Is, 2H Is K 
from GaH3 and TiH3F, otherwise K's and KR/KV'S are taken from 
GaH, TiH, and TiF results. 

cannot be obtained for certain diatomics, for example, 
nitrides and carbides of transition metals. Hopefully, 
further SCF calculations will be carried out on small 
polyatomics, using either Slater orbital basis sets or 
STO-KG methods,6 which approximate STO's by linear 
combinations of Gaussians. Until that time we must 
employ two-center K's from the most closely related 
molecules available. 

A second possible approximation for the off-diagonal 
elements would have been to calculate accurately the 
kinetic and nuclear attraction integrals and use a 
Mulliken-type relationship only on the two-electron 
part of the potential. The equation which would be 
used is 

U„ = Vi} + KijR(Rti + R11)Il 

where Km = 2R{j/(Rti + R11) in the model compound, 
and the R's are the electron repulsion matrix elements. 

Table III. K's for GaH, TiH, and TiF Bonds 

GaH 
GaH3 

Ga 

TiH 

TiF 

TiH3F 

IS, 2s 
0.72 
0.72 
0.72 

Is, 2s 
0.71 

0.71 

0.71 

TiF 

TiH3F 

Is, 3s 
0.47 
0.47 
0.47 

GaH 
GaH3 

Is, 3s 
0.46 

0.46 

0.46 

TiH 
TiH3F 

F 2s, 4s 
1.104 

1.10 

Is, 4s 
0.27 
0.27 
0.27 

H Is, 3s 
1.121 
1.12 

Is, 4s 
0.24 

0.24 

0.24 

H Is, 3s 
1.048 
1.05 

2s, 

One Center 
2s, 3s 2s, 4s 
0.80 0.48 
0.80 0.48 
0.80 0.48 

Two Center 
H Is, 4s H Is, 3p 

1.105 0.724 
1.11 0.73 

One Center 
3s 4s, 4s 3s, 4s 

0.79 0.49 0.70 

0.79 0.49 0.70 

0.79 0.49 0.71 

F 2s, 4p 
1. 

1. 

163 

16 

Two Center 
H Is, 4s H Is, 3p 

1.104 0.766 
1.06 0.77 

F 2s, 3d F 2p, 4s 
0.713 1.047 

0.71 1.08 

3s, 3s 
0.63 
0.63 
0.63 

H Is, 4p 
1.135 
1.08 

2p, 3p 
0.75 

0.75 

0.76 

H Is, 4p 
1.135 
1.09 

2p, 3p 
0.77 
0.77 
0.77 

H Is, 3d 
0.612 
0.60 

2p, 4p 
0.45 

0.44 

0.46 

H Is, 3d 
0.905 
0.92 

F 2p, 4p 
a 

Wt av 

2.910 
0.925 
1.225 
1.22 

2p, 4p 
0.48 
0.48 
0.48 

3p, 4p 
o- 0.662 
T 0.681 
a 0.667 
IT 0.677 

0.69 

F 2p, 3d 
o- 0.797 
T 0.714 

0.765 
0.79 

3p, 4p 
0.60 
0.61 
0.63 

Is, 2s 
0.66 

0.658 

0.69 

containing second-row atoms, where p^-p,, and pT-p» 
interactions are possible, INDO averaging gives poor 
results. The a's of the 3d orbitals are less affected by 
the averaging procedures than those of the 4s and 4p. 
Anisotropies in metal 3d ligand two-center Coulomb 
integrals are small, and exchange integrals are often so 
small that they may be neglected completely. The 
3d a's are dependent on the outer orbital densities, 
however, and 4s and 4p (and ligand 2s and 2p) anisot­
ropies must be retained in order to give these densi­
ties to a reasonably good approximation. 

Approximations for Off-Diagonal Elements. The 
Kt/s for eq 4 are obtained from model SCF calcula­
tions, principally from calculations on diatomic 
molecules. The K's for various types of interactions 
are found to be quite insensitive to the internuclear 
distance and to the particular molecule from which 
they are obtained. One-center K's can also be obtained 
easily and directly from atomic SCF calculations. 
Difficulty arises when convergent SCF calculations 

Elements of the UMATRIX obtained in this way for 
GaH3 are given in Table II. In such an approach, 
lack of cancellation between the two large terms Vtj 

and Rtj causes serious error. 
The integrals are available to calculate the two-center 

off-diagonal elements directly, using the formula 

U, ikjK = ViA]K + 11(<t>iA<f>JB\<t>k4>k) 
k 

0.5{4>i,<i>lt\<i>^k)Pk (7) 

The errors in these off-diagonal terms are expected to 
be proportionally larger than those in the diagonal 
terms, since none of the necessary two-electron integrals 
is calculated exactly, and the approximate two-center 
integrals are multiplied by the large, usually positive, 
orbital populations. Hence, there is little cancellation 
of errors. Only if the two-center hybrid integrals were 
calculated accurately, e.g., by expansion of the Slater 
orbitals as limited sets of Gaussians,19 would this 

(19) D. B. Cook and P. Palmieri, MoI. Phys., 17, 271 (1969). 
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Table IV. 

(A) Variation of Two-Center ZC's with Distance and Exponent in 
GaH for fIIIS = 1.0 

R . 
2.630 2.931 3.156 

/ f ( H l s , 3s) 1.1281 1.1216 1.1175 
/ C R ( H I S , 3s) 1.2385 1.2568 1.2691 
Z(TV(HIS, 3s) 1.2100 1.2216 1.2294 
ZC(HIs, 4s) 1.1094 1.1150 1.1135 
ZCR(H IS, 4S) 1.0332 1.0274 1.0200 
ZCv(HIs, 4s) 1.0340 1.0340 1.0269 
ZC(3p, H i s ) 0.7362 0.7246 0.7172 
ZCR(3p,Hls) 1.0675 1.0808 1.0900 
ZCv (3 p, H i s ) 0.9870 0.9936 0.9981 
ZC (4p, H i s ) 1.1110 1.1351 1.1504 
ZCR (4p, H i s ) 1.0018 0.9884 0.9807 
ZCv (4p, H i s ) 1.0031 0.9990 0.9928 

(B) Variation of ZC's with fm.; GaH, R = 2.931 
^HIs • 

1.2 1.0 0.8 

H Is 
H 4s 
H 4 p 2 

H 3d,* 

H Is, 4s 
H Is, 4p 
H Is, 3d2> 
H Is, 3s 

1.157 
1.808 
1.127 
1.913 

Ki.uu 
1.115 
1.135 
0.612 
1.121 

1.375 
1.776 
0.964 
1.891 

1.105 
1.115 
0.578 
1.157 

1.517 
1.760 
0.846 
1.885 

1.106 
1.112 
0.537 
1.185 

Table V. NEMO I, II, and III Results for GaH3 

method be expected to give good results. Preliminary 
results using our accurate integrals suggest that this is 
indeed so. In Table II we give a comparison of off-
diagonal elements in GaH3 and TiH3F calculated from 
diatomic parameters and directly from the integrals. 

The use of K's from model compounds will give good 
results, provided that K's describing various AO inter­
actions do not change appreciably within a series of 
closely related molecules. It would also be very de­
sirable if the K's varied slowly with exponent and inter-
nuclear distance. In Table III we compare the mole­

cules TiH3F and GaH3 and their various fragments. 
Although the a's vary substantially, we see that K's 
are indeed remarkably constant. 

In order to test the stability of the K's under changes 
in bond length, we carried out SCF calculations on 
GaH at three different internuclear distances using the 
same basis set (fms = 1.0). Results are given in Table 
IVA. The various K's are quite similar for all three 
distances. Also, a comparison given in Table IVB of 
calculations performed at R = 2.931 with J-HIs = 1.2 
and J-HIs = 0.8 shows that K varies little with orbital ex­
ponent provided that the exponent change does not 
drastically change the wave function. 

In Appendix B we give K's for ab initio SCF calcula­
tions on CuF using two basis sets having slightly differ­
ent exponents. The K's differ little between the two 
calculations. 

Comparison with Ab Initio SCF Results 

Nemo III results are compared with the ab initio SCF 
and NEMO I and II results for some small molecules 
in Appendix C. In the NEMO I method a's are taken 
without modification from SCF calculations for model 
compounds. In NEMO II a's are obtained as 

a« = CitJ2oiikFkkA}k 

so that the overlap of / with orbitals on adjacent atoms 

was allowed to modify the diagonal element. Results 
are given in Tables V and VI, where we compare NEMO 
I,6a II,5b and III calculations with SCF results for GaH3 

and TiH3F. Although the NEMO I and SCF results 
are similar, the failure to allow for changes in a's and 
the need for averaging underestimate the electron popu­
lations on the central atoms and also reproduce their 
anisotropy poorly. The NEMO II calculation gives 
good a's for 4s and 4p orbitals but poor results for 
3d's and also for the H Is and the core orbitals of the 
metal. Although the NEMO II method may give good 

l 

3d2* 
3d« 
3dx!_„s 
4s 
4p* 
4p« 
H Is 
Is 
2s 
3s 

3d2» 
3d„ 
3dxi_„» 
4s 
4p* 
4 p i 
H Is 
((HFMO)' 
e( LEMO)* 

SCF 

- 0 . 4 1 3 
- 0 . 4 6 1 
- 0 . 4 2 1 
- 0 . 6 4 8 
- 0 . 0 3 7 
- 0 . 3 5 1 
- 0 . 4 0 7 

-378 .960 
- 8 4 . 2 2 6 
- 1 4 . 1 6 1 

1.945 
2.0 
1.930 
1.142 
0.013 
0.910 
1.076 

- 0 . 3 9 4 
0.090 

" a's taken directly from GaH with the 

NEMO I" 

- 0 . 3 4 6 
- 0 . 3 4 2 
- 0 . 2 9 0 
- 0 . 5 7 1 
- 0 . 0 1 1 
- 0 . 2 8 0 
- 0 . 4 0 5 

-378 .808 
- 8 4 . 0 7 7 
- 1 4 . 0 4 2 

1.980 
2.0 
1.972 
1.052 
0.011 
0.738 
1.189 

- 0 . 2 6 6 
0.090 

NEMO IP 

- 0 . 3 2 2 
- 0 . 3 2 2 
- 0 . 3 2 3 
- 0 . 6 0 1 
- 0 . 0 2 6 
- 0 . 2 7 9 
- 0 . 3 8 9 

-378 .775 
-84 .107 
-14 .059 

Pu 
1.957 
2.0 
1.958 
0.883 
0.011 
0.906 
1.149 

- 0 . 2 8 8 
0.075 

same internuclear distance and expone 

-NEMO HI 
Ga Is, 2s, 2p, 3s Is, 2s, 2p, 3s, 3p 

Core 

- 0 . 4 1 7 
- 0 . 4 4 9 
- 0 . 4 2 0 
- 0 . 6 6 7 
- 0 . 0 3 7 
- 0 . 3 5 5 
- 0 . 3 9 6 

-378.984 
- 8 4 . 2 4 9 
-14 .167 

1.945 
2.0 
1.938 
1.206 
0.010 
0.925 
1.046 

- 0 . 3 8 6 
0.072 

:nts. b Cpq paramete 

Core 

- 0 . 4 2 4 
- 0 . 4 5 7 
- 0 . 4 2 7 
- 0 . 6 6 5 
- 0 . 0 3 2 
- 0 . 3 5 5 
- 0 . 3 7 5 

-378.942 
-84 .208 
-14 .138 

1.947 
2.0 
1.938 
1.243 
0.010 
0.982 
0.994 

- 0 . 3 8 6 
0.069 

rs and average a ' s : 

No core 

- 0 . 4 0 7 
- 0 . 4 4 2 
- 0 . 4 0 8 
- 0 . 6 8 0 
- 0 . 0 2 5 
- 0 . 3 4 0 
- 0 . 4 0 6 

-378 .923 
-84 .199 
- 1 4 . 1 5 5 

1.938 
2.0 
1.939 
1.217 
0.010 
0.892 
1.066 

- 0 . 3 8 0 
0.076 

from GaH. < HFMO 

Tossell, Lipscomb / MO's for Large Molecules 
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Table VI 

(A) TiH3F Valence- and Core-Orbital a's and Zero-Overlap 

Ti3p, 
3plS 
3d,* 
~>Qxz, yz 

3dx*_y*,Xy 

4s 
4p, 
4Px.„ 

H Is 
F 2s 

2p* 
2px,i/ 

Ti Is 
2s 
2p, 
2Px,K 
3s 

F Is 

4ps, 4s 
3d,(, 4s 
3d,=, 4p* 
3d l 8 - yi, 4px 
3dx2, 3dx!_„2 

FMATRIX Elements 
SCF NEMO 

Valence-Orbital a's 

TiH, TiF 
-3.672 -3.643 -3.615, -3.614 
-3.671 -3.643 - 3 . 611, -3.608 

0.020 0.036 0.054,0.065 
0.091 0.110 0. 221,0.206 
0.067 0.084 -0.467, -0.463 

-0.476 -0.496 - 0 . 
-0.206 -0.209 - 0 . 

375, -0.418 
125, -0.193 

-0.142 -0.143 -0 .017, -0 .034 
-0.435 -0.420 
-3.004 -2.980 
-0.433 -0.432 
-0.435 -0.433 

Core-Orbital a's 

-0.427 
-2.975 
-0.412 
-0.404 

Free atoms 
-183.655 -183.640 
-37.938 -37.902 
-18.036 -18.004 
-18.037 -18.005 
-6.302 -6.267 

-26.103 -25.945 

FMATRIX Elements 
-0.053 -0.047 

0.010 0.016 
-0.061 -0.039 

0.090 0.091 
0.085 0.079 

-183.223 
-35.495 
-17.592 
-17.592 
-5.957 

-26.133 

(B) Orbital Populations, Eigenvalues, and Energies 
D 

H Is 
Ti 3d,* 

jQxziyz 

3d I !_ s 2,xi , 
4s 
4p. 

4p„» 
F2s 

2p« 
2p*„ 

9(H) 
9(Ti) 
9(F) 
(HFMO) 
(LEMO) 
Kinetic energy 
Total energy 

i I l 

SCF NEMO 

1.30 1.28 
0.37 0.37 
0.22 0.22 
0.28 0.27 
0.70 0.77 
0.09 0.11 
0.33 0.35 
1.94 1.94 
1.68 1.69 
1.83 1.82 

- 0 . 3 0 -0 .28 
1.18 1.11 

-0 .28 -0 .27 
-0.444 -0.421 

0.075 0.075 
947.299 947.109 

-947.464 -946.830 

NEMO 
F z o = 0.0 

-0 .40 
1.37 

-0 .17 
-0.408 

0.009 

results for valence orbital populations, and fair anisot­
ropics, the a's of 3d orbitals cannot be obtained ac­
curately. On the other hand, the NEMO III results 
are very close to the SCF results: for example, aver­
age values and anisotropics of all valence orbitals are 
given well. In both GaH3 and TiH3F we note that the 
ligand a's are very similar for the diatomics and cor­
responding polyatomics. However, the self-consistent 
procedure would be destroyed by any attempt to main­
tain ligand a's constant, since the ligand a's could not 
reflect the self-consistent conditions. 

Table VI contains a's calculated from the SCF den­
sity matrix for TiH3F in the NEMO III approximation. 
The largest errors among the valence orbitals are for 
F 2s and F 2p. The a's of the Ti core are all too posi­
tive by about 0.03 au, probably as a result of the neglect 

of the neutral penetration term. Only the a of the F 
Is is seriously in error. The eigenvalues and charge 
distribution are quite close to the SCF values. 

In TiH3F we see that all zero-overlap elements, in­
cluding those between different components of the 3d 
orbital are given reasonably well by formula 5. How­
ever, although the formulas for the diagonal and zero-
overlap off-diagonal elements are separately rotation-
ally invariant, when they are used together the results 
are not rotationally invariant (see ref 7b). Therefore, 
our results do depend upon the coordinate system 
chosen. No provision is made in the programming for 
including all zero-overlap elements automatically. 
Moreover, the algorithm for generating them is the least 
accurate of the formulas employed, and this formula re­
quires parameterization from ab initio SCF results. 
Therefore, the NEMO III method is restricted at pres­
ent to molecules of high symmetry. A rotationally 
invariant alternative for zero-overlap elements has been 
given previously,713 but the results are less accurate. 

The results of a NEMO III calculation on CuF, 
using two different core-valence divisions, are given 
in Table VII (see Appendix B for the basis set). Di­
agonal FMATRIX elements, eigenvalues, and orbital 
populations are all fairly good, as are zero-overlap 
FMATRIX elements. We note that an expansion of 
the d-orbital basis to two Slater orbitals causes no diffi­
culty in the method, regardless of whether or not the 
inner Slater orbital is included in the core. In our 
NEMO III calculations, errors in total energies, given 
in Tables VIB and XVII, are small on a percentage basis 
(±0.05%) but are large compared with dissociation 
energies. Hence, the calculations can be expected to 
give at best only trends in reaction energies. 

The above results show that a's may be calculated 
accurately by our method and that K's may be trans­
ferred within a series of molecules. Therefore, we 
can, for example, calculate an accurate wave function 
for TiH3F using only the basic equations and param­
eters from TiH and TiF. 

Molecular Orbital Results for CuF4
2-

The above method has been applied to the calculation 
of the 2BU ground state of the hypothetical square-
planar ion CuF4

2 - . This ion was chosen because off-
diagonal parameters (AT's) were available from the SCF 
calculation for CuF. The diatomic distance and the 
exponents for the free-atom basis set were employed 
(see Appendix B). The calculation also allows us to 
test the NEMO III theory for open shells. Two-center 
K's for the F-F interactions were not available from 
our polyatomic SCF calculations. Hence, we employed 
parameters taken from calculations on F2 at the ap­
propriate distances. Results are compared with both 
simpler and more rigorous theories on related mole­
cules, even though no results exist for CuF4

2- itself. 
Ros and Schuit9 carried out Wolfsberg-Helmholtz 

type calculations for CuCl4
2"; they used an approxi­

mate semiempirical formula for generating a's and re­
quired charge consistency. Demuynuck and Veil-
lard20 performed an ab initio SCF calculation on 
CuCl4

2" using a small Gaussian orbital basis set and 
Roothaan's open-shell formalism. The Cu charge 
was 1.28 and the d orbital ordering was dxi-yi > 

(20) J. Demuynuck and A. Veillard, Chem. Phys. Lett., 6, 204 (1970). 
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( 
Cu 3s 

3p, 
3d,' 
3dx, 
3dx2_„' 
3d,' ' 
3dX2' 
3 d x ' _ / 
4s 
4px 
4px,» 

F Is 
2s 
2p, 
2p*.» 
9(F) 

Uj 

4p„ 4s 
4s, 3d,2' 
4px, 3d*/ 
4p„ 3d,' ' 
F 2p„ F 2s 

SCF 

-11 .768 
- 7 . 1 2 9 

1.133 
1.043 
1.053 
0.248 
0.239 
0.246 

- 0 . 2 5 0 
- 1 . 0 4 8 
- 1 . 0 2 5 

- 2 6 . 0 8 3 
- 2 . 8 1 8 
- 0 . 1 7 6 
- 0 . 3 7 0 
- 0 . 2 0 5 

- 0 . 0 4 9 
0.007 
0.020 

- 0 . 0 1 7 
- 0 . 0 4 3 

NEMO III-
A 

- 1 1 . 7 5 2 
- 7 . 1 7 0 

1.074 
0.988 
1.000 
0.206 
0.194 
0.200 

- 0 . 2 5 9 
- 1 . 0 9 1 
- 1 . 0 6 8 

- 2 6 . 0 5 2 
- 2 . 8 1 6 
- 0 . 1 6 9 
- 0 . 3 6 2 
- 0 . 2 8 4 

Faz(> 

- 0 . 0 6 8 
0.004 
0.014 

- 0 . 0 1 6 
- 0 . 0 4 8 

B 

- 1 1 . 5 7 2 
- 7 . 1 1 1 

1.107 
1.031 
1.040 
0.231 
0.245 
0.250 

- 0 . 2 3 5 
- 1 . 0 5 5 
- 1 . 0 2 2 

- 2 6 . 0 3 8 
- 2 . 8 0 1 
- 0 . 1 5 2 
- 0 . 3 5 0 
- 0 . 2 1 6 

- 0 . 0 6 8 
- 0 . 0 1 6 
- 0 . 0 1 1 
- 0 . 0 1 6 
- 0 . 0 4 9 

Cu 3d,' ' 
3dx, 
3dx'_„' 
4s 
4p, 
4px,» 

F 2s 
2p, 
2p*,v 

(HFMO a) 
(LEMO <r) 
(HFMO *•) 
(HFMO 5) 

SCF 

1.168 
1.237 
1.241 
0.839 
0.130 
0.115 
1.982 
1.310 
1.996 

- 0 . 2 4 9 
0.144 

- 0 . 3 5 9 
- 0 . 4 9 5 

fa • 
NEMO III 

A 

1.200 
1.245 
1.248 
0.860 
0.130 
0.107 
1.988 
1.229 
1.994 

- 0 . 2 4 9 
0.123 

- 0 . 3 3 5 
- 0 . 5 0 2 

B 

1.208 
1.241 
1.245 
0.893 
0.135 
0.114 
1.989 
1.233 
1.994 

- 0 . 2 2 1 
0.139 

- 0 . 3 1 7 
- 0 . 4 5 7 

: NEMO A is general method with Is, 2s, 2p, 3s, core. NEMO B is general method with Is, 2s, 2p, 3s, 3p, 3d core. 

dZ2 > dxz,yz > dxll. However, the "uncorrected" 
eigenvalues of the unfilled orbital were lower than those 
of some filled d orbitals. The open-shell MO for the 
best basis set employed had 89% Cu Sd1*-^ char­
acter. The highest energy filled MO's were predom­
inantly Cl 3p orbitals, with the filled 3d orbitals at 
lower energy. 

Recently Basch, Hollister, and Moskowitz21 per­
formed an ab initio SCF calculation on NiF 4

2 - , using 
a large number of fixed linear combinations of Gaussian 
orbitals, called Gaussian-type functions (GTF's). A 
double f representation was used for the F 2p orbitals 
and the Ni 3d orbitals. The results showed 17 "core" 
orbitals, followed by 4 predominantly 3d orbitals with 
the order 3d^ < 2>dxi,vt < ?>dxy. The next 12 orbitals 
were predominantly F 2p orbitals. The first unoc­
cupied orbitals are Ni 4s, followed by Ni 3dxs_„2 and 
finally Ni 4p. Populations and charges were: Ni-
(core),83d8-134s0-0204p0'49F(core)3-962p-84, ?(Ni) = 1.12. 
They found that transition energies, calculated as lE(i -*• 
j) = «( — ij — Ji, + 2Ktl, were not always proportional 
to eigenvalue differences because of large differences 
in the values of the two-electron integrals over MO's. 

We present two sets of NEMO III results using differ­
ent methods of averaging within the symmetry and 
equivalence restrictions. In the first (A), the electron 
in the half-filled 6b lg orbital is allowed to repel itself 
as if a closed shell were present. Thus, the orbital 
eigenvalue requires a zero-order correction. In the 
second method (B), the 6b lg interaction with itself is 
correct but its interactions with the filled orbitals are 
not, and hence their eigenvalues require zero-order 
corrections. 

These are the two extreme methods of averaging 
within the symmetry and equivalence restrictions for 
this system. We find that results for these two methods 

(21) H. Basch, C. Hollister, and J. W. Moskowitz, "Sigma Molecular 
Orbital Theory," O. Sinanoglu and K. B. Wiberg, Ed., Yale University 
Press, New Haven, Conn., 1970, p 449. 

Table VIII 

Cu Is 
Cu 2s 
Cu 2p, 
Cu 3s 
Cu 3p, 
Cu 3d,' 

xz, yz 
x2 — y2, xy 

Cu 3d,' ' 
xz, yz 
x2 — y2, xy 

4s 
4p, 

x, y 
IF Is 
IF 2s 
l F 2 p s 

X 

y 
F (2p„ 2s) 

A 

-328.575 
- 7 1 . 5 8 0 
-35 .118 
-11 .223 

- 6 . 6 7 9 
1.546 
1.460 
1.589, 
0.731 
0.711 
0.802, 

- 0 . 0 8 8 
- 0 . 5 7 6 
- 0 . 6 2 9 

-25 .339 
- 2 . 2 2 2 

0.248 
0.300 
0.239 

- 0 . 0 4 0 

1.446 

0.726 

B 

-328.531 
- 7 1 . 5 4 0 
-35 .077 
- 1 1 205 

- 6 . 6 5 6 
1.567 
1.484 
1.403, 1.478 
0.471 
0.721 
0.741,0.738 

- 0 . 0 8 5 
- 0 . 5 6 9 
- 0 . 6 2 6 

- 2 5 . 3 1 5 
- 2 . 2 2 3 

0.263 
0.228 
0.254 

- 0 . 0 4 0 

are quite similar. As would be expected, the atomic 
orbitals constituting the open-shell MO (3dx*-yi and 
F 2p) are stabilized in the second calculation (calcula­
tion B) and their populations increase slightly relative 
to the populations of calculation A. The resulting in­
crease in the 3dX2_2,2 population raises the a's of the 
other d orbitals slightly. The only qualitative differ­
ence between the two calculations is in the ordering of 
the 3big (x

2 - y2) and 6aig (z
2) MO's. Unless indicated, 

results discussed in the text below will be for calcula­
tion B. 

Generally, our results show smaller charge separa­
tions (in terms of Mulliken charges) and greater cova-
lency than do previous calculations. The charge on 
Cu is 0.44, with charge transfer (relative to the 3d104s 
atom) out of both the 3dx2_j,2 and the 4s orbitals and 
with increased charge in the 4p orbitals. The F orbi-
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Table IX. CuF4
2- Eigenvalues and Mulliken GAOP's in MO's for Calculation B 

Orbital 

18 
19, 20 
21 
22 
23 
24,25 
26 
27 
28, 29 
30 
31 
32, 33 
34 
35 

e 

- 0 . 0 6 4 
- 0 . 0 1 9 
- 0 . 0 0 8 

0.007 
0.142 
0.247 
0.255 
0.271 
0.292 
0.292 
0.307 
0.308 
0.494 
1.053 

Table X. CuF4
2 - Orbital Populations 

(3d + 3d'), ' 
XZ 

x2 - y2 

xy 
4s 
4p2 

4px,„ 
F 2s 
F 2 p , 
F2p„ 
F 2 p , h 

9(Cu) 
2«; 
One-electron energy 
Total energy 
Kinetic energy 
/V 

° Corrected by subtracting 0.5K(4bie, 4b 
and 3s. 

(0.56 + 1.00) 3d,„ + 0 .44F2p lb2g 

(0.70 + 1.16) 3d„ + 0 .14F2p Ie8 

(0.56 + 0.99) 3d,* + 0.05F 2s + 0.40F 2p 6a,e 

(0.50 + 0.81) 3dx'_^ + 0.09F 2s + 0.60F 2p 3big 

(0.11 + 0.19) 3d,* + 0.494s + 0 .12F2s + 1.08F2p 7aig 

0.07 4p + 1.93F2p 5eu 

2.00F2p 3a2u 

2.00F2p lb,u 

(0.07 + 0.07) 3d„ + 1.82F 2p, 2eg 

(0.23 + 0.20) 3dIB + 1.56F 2p 2b2g 

2.00F 2p la2e 

0.014p + 1.99F2p 6eu 

(0.19 + 0.12) 3dx*_„• + 0.69 F2p 4bIg 

(0.14 + 0.03)3ds> + 1.254s + 0 . 1 2 F 2s + 0.44F 2p 8a,g 

\ I i • H* Ir f\v* fl. A f \Q"i" i H l n l L l r ' v r t m rsxwl A x« i4^%rti< 

' LviLiiiiNcii \jrwjr 3 - •- iviuiiiKcn uvc i lap pup t 
A B 

1.879 1.865 Cu 3d / , F 2s 
2.002 2.003 Cu3d I !_„2 ' , F 2s 
1.709 1.717 Cu 4s, F 2s 
2.008 2.008 Cu 4s, F 2p„ 
0.765 0.729 Cu 4p„ F 2s 
0.039 0.015 Cu 4p,r, F 2p<, 
0.119 0.111 C u 3 ' d „ , F2p X v 

1.960 1.955 
1.995 1.995 
1.646 1.662 
1.995 1.995 
0.40 0.44 

-1177.870« -1177.059 6 

-3698.140 -3698.614 
-2026.950 -2026.782 

2032.260 2032.475 
411.055 411.055 

2£<" = -2030.079 = E(Cu2+) + rE(F~) 

Cuncorr 

- 0 . 0 6 8 
- 0 . 0 2 4 
- 0 . 0 3 0 
- 0 . 0 9 9 

0.092 
0.188 
0.251 
0.267 
0.287 
0.288 
0.302 
0.280 
0.494 
1.053 

ilations . 
B 

0.008 
0.023 

- 0 . 0 2 6 
- 0 . 0 6 9 

0.014 
0.064 

- 0 . 0 0 2 

ig).
 b Corrected by adding 0 . 5 ^ ( 4 b i g , 0 where the summation excludes the core MO's Is, 2s, 2p, 

i = l 

tals are filled except for the p orbital of a symmetry 
with respect to the Cu-F bond, which has a GAOP of 
1.67. The orbital populations are: Cu(core)183d9'60-
4s0.734p0.24F(core)2.02S1.952p5.65. J h e s m a U a t 0 m i c 

charges seem reasonable in view of the small charge 
separation in the model ab initio SCF calculation on 
CuF, but the failure of the NEMO III results for CuF 
to give an accurate F 2pc population may also be a 
factor leading to this small atomic charge. 

The as, eigenvalues, and MO compositions are given 
in Tables VIII and IX. The orbital populations and 
energy quantities are given in Table X. The orbital 
structure is similar to that found by Basch, et ah, for 
NiF 4

2 - and by Demuynuck and Veillard for CuCl5
2-. 

The lowest 17 orbitals are core orbitals. Orbitals 18 
through 22 are predominantly Cu 3d orbitals in the 
order xy < xz, yz < z2 < x2 — y2. The orbitals from 
24 to 33 are predominantly F 2p. The half-filled 4b!g 

orbital (no. 34) is about 30% 3d**- The lowest 
unoccupied MO is the 8aig, composed primarily of 4s 
and F 2p. The eight highest orbitals are almost en­
tirely the atomic virtual orbitals arising from the 3p, 
4p and 3d, 3d' combinations. 

One measure of agreement with experiment for tran­
sition metal halide calculations is the value of the trans­
ferred hyperfine coupling on the ligand. Previous ap­

proximate calculations have given good results for this 
quantity.22'23 Our results for the open shell, described 
as cj)3i = 0.563dl2_^ + 0.07X(s) + 0.44X(<r), where 
the X's are symmetry-adapted combinations of ligand 
s and p„ orbitals, a re / s = (0.07)2 = 0.49% and / , = 
(0.44)2 = 19.3 %. The hyperfine constants for CuCl4

2-
a re / s = 0.61% and/^ - 11.9%,25 and so the electron 
distribution in the 4big orgital would seem to be at 
least qualitatively correct. The CuF distance used is 
the gas-phase value and is probably smaller than the 
appropriate solid-state distance. This would tend to 
increase the covalency and the/parameters. 

Previous workers have considered the distortion of 
the 3d orbital in metal complexes to be a measure of 
covalency.23 The spatial expansion of the 3d orbital 
in the complex can be compared with that in the free 
atom by taking the ratio of the Mulliken populations in 
the inner and outer 3d Slater orbitals for our double-f 
calculation. Such results are presented in Table XI. 
Along with the ligand coefficients in the metal MO's, 
these quantities can give a measure of the covalency. 
We find that filled xy and z2 orbitals are slightly ex­
panded and that antibonding and unfilled orbitals are 

(22) H. Rinneberg, H. Haas, and H. Hartmann, J. Chem. Phys., 
50, 3064 (1969). 

(23) H. M. Gladney and A. Veillard, Phys. Rev., 189, 385 (1969). 
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Table XI. Ratio of Outer/Inner 3d-Orbital Populations" 

Orbital Ratio 

18 
19 
21 
22 
23 
28 
30 
34 

" Free atom, 1.68. For calculation B. 

1.79 
1.66 
1.79 
1.62 
1.73 
1.00 
0.91 
0.63 

We expect that approximate calculations of this type 
can serve two purposes. First, they should give in­
sight into the type of basis set required to accurately 
describe these compounds. The lack of low-energy 
virtual orbitals in our calculations makes clear the in­
adequacy of the present basis set. The presence of a 
4s orbital is necessary to obtain reasonable covalency 
parameters,23 and a diffuse 4p orbital may be necessary 
for the construction of virtual orbitals. Any expansion 
of the set must be done carefully, however, to avoid im­
balance. For example, Carson and Moser2 suggested 

Table XII. Transition Energies (au) of CuF4
2" 

Aey Jii Jii Ka AE, au AE, cm -

Ib28 xy-*x2-y2 4bie 

leg xz, yz~* x2 — y2 4big 

6a,g z2 — x2 - y2 4b,g 

6eu F 2p - * x2 - y2 4big 

6eu F 2p -*• F s, F 2p, 8aig 

0.558 
0.513 
0.502 
0.186 

0.745 

0.446 
0.446 
0.446 
0.446 

0.500 
0.516 
0.488 
0.356 

0.305 

0.007 
0.011 
0.045 
0.056 

0.029 

0.507 
0.448 
0.482 
0.304 

0.398 

112.2 X 10« 
98.3 X 103 

105.7 X 103 

66.7 X 103 

87.3 X 103 

slightly contracted, as has been found in the ab initio 
SCF results. This is consistent with a recent interpreta­
tion of Racah parameter values in Mn2+ compounds.24 

From the eigenvalue differences and transformed in­
tegrals, we can calculate transition energies from filled 
orbitals to the half-filled and unfilled orbital (see Ap­
pendix D). These energies are listed in Table XII. 
Clearly, transition energies are strongly influenced by 
the J and K integrals. Although the J integrals over 
inner d orbitals are similar to the free-atom value of 
1.03308 au, the / integrals of the half-filled 4b lg orbital 
with the filled orbitals are much lower, because of cova­
lency in the 4blg. 

Our results show that the lowest charge-transfer 
transition is the 6eu -* 4bJg (F 2p - • Cu 3dx!_j,0 tran­
sition at 66,700 cm - 1 . The charge-transfer transition 
to the predominantly 4s (8aig) orbital is at 88,700 cm - 1 . 
The d-d transitions to the half-filled 4big orbital fall 
at higher energy. As in the NiF 4

2 - calculation of 
Basch, et a!., the relative energy of the z2 -*• x2 — y1 

transition is raised by the low relative value of /(6aig, 
4blg) and the high value of /iT(6aig, 4blg). In our cal­
culation, however, this effect is not large enough to 
give the 6aig -*• 4b lg as the highest energy d-d transition. 

This calculation required 1.5 min for the accurate 
two-electron integral computation, 1.3 min to approx­
imate the many-center integrals and write a tape, 1 min 
to evaluate the one-electron integrals, and 12 min to 
calculate the self-consistent wave function (16 iterations) 
on the IBM 360/65. 

Conclusions 

The CuF4
2 - results indicate that our method is ca­

pable of reproducing semiquantitatively the relative 
energies of different ligand and metal orbitals and of 
giving correct metal orbital anisotropies. Our ability 
to calculate the two-center integrals over MO's, Ji} and 
Kv, makes possible the calculation of transition energies 
and the consideration of open shells. Approximate 
total energies can also be obtained. Since the core 
orbitals are allowed to change in energy as a function 
of the charge distribution, the energies of the core MO's 
are given accurately. 

(24) L. L. Lohr, Jr., J. Chem. Phys., 55, 27 (1971). 

that the use of a double-f ligand 2p basis might unbal­
ance the basis set because the ligand would be nearer 
than the metal to the Hartree-Fock limit. In the pres­
ent basis, orbital energies differ from their Hartree-
Fock limitslb by +0.038 for 4s, +0.075 for 3d, and 
+ 0.730 for F 2p. The highly positive (+0.244) 2p 
eigenvalues of F using the present basis provide a partial 
explanation for the many positive values of e among the 
filled orbitals. 

Secondly, we expect that this method can give qual­
itatively correct results for charge distributions and 
energy trends in transition metal compounds. Our 
nonempirical framework prevents us from making 
prior assumptions about the ordering of energy levels, 
and we expect to obtain information about spectra and 
electron distribution which will be dependent only on 
the basis set employed. The use of double-f d-orbital 
basis allows us to evaluate the effect of covalency on 
the Racah parameters. Hyperfine coupling constants 
should also be given to fair accuracy. Explanations 
of chemical reactivity based upon semiempirical models 
can be checked. Perturbation theory can be applied 
to these wave functions in order to obtain values for 
second-order magnetic properties, such as chemical 
shifts.15'25 
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Appendix A. Zero-Overlap Elements 

These elements are particularly difficult to calculate 
since in different cases all three of the terms in eq 5 
are sizable. The first term is a one-center term whose 
most important contribution is {1.5(y[y) — 0.5 (ii\jj)}-
P11. The second comes from the exchange 
interaction of pr'A, A and the two-center charge 
distribution piA, kB. The third arises from the at-

(25) Another new parameterized SCF method, requiring small com. 
putational time and capable of high accuracy, will appear: T. A. 
Halgren and W. N. Lipscomb, Proc. Nat. Acad. Sci. U. S., in press. 
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Table XIII. Cu and Cr Energies with Different Basis Sets« 

Cr 
Cr 

Cu 
Cu 

3d44s2 

3d64s 

3d»4s2 

3dl04s 

I 

-1041.7462 
-1041.7468 

-0 .0006 
-1636.5806 
-1636.5183 

+0.0523 

II (THF) 

-1042.6073 
-1042.6490 

-0 .0417 
-1637.7987 
-1637.7942 

+0.0045 

III (HF) 

-1043.3061 

-1638.9491 
-1638.9614 

-0 .0123 

IV (MBS) 

-1041.0062 
-1040.6664 

+0.3398 
-1633.2393 
-1632.3177 

-0 .9216 

" I, present basis sets (4s, 2p, 2d); II, Claydon and Carlson's truncated Hartree-Fock (5s, 3p, 3d); III, dementi's near-Hartree-Fock basis 
sets; IV, dementi's optimized minimum basis set (4s, 2p, Id). 

traction of adjacent nuclei, shielded by their electrons. 
For GaH3, only the first two terms are important, but 
for the 2s, 2p elements of first-row atoms all three terms 
are important, with the third predominating. Only 
the third term contains disposable parameters which 
may be obtained from the model SCF results by using 
the relation 

C« m = KiAyAl^BWB) - 0.5(/AmBlZAWB)IAZAyAkB-1) 

Comparisons of SCF ZO FMATRIX elements and 
NEMO III results are given in the tables. The ZO 
elements are quite important in controlling the molecu­
lar charge distribution. In order to maintain rota­
tional invariance in the formula, the Cm parameters 
must depend only on the n and / quantum numbers of 
m, not on the azimuthal quantum number. Equa­
tion 5 is applied only to one-center ZO elements; all 
two-center elements are neglected. The Cw

m's are 
also used to correct the Fmm 's for the presence of the 
density matrix element ptj. We thus introduce a term 

AFi EQ111Pw(ZAyAkB-1) 

modifying the diagonal elements. 

Appendix B. SCF Calculations on 
Atoms and Diatomics 

We have performed several ab initio SCF calculations 
on transition metal atoms and diatomic molecules. 
Our purpose has been to provide parameters for our 
approximate calculations and to investigate the nature 
of the basis sets required for such calculations. The 
smallness of our basis sets prevents us from discussing 
the chemistries of the molecules studied in too much 
detail, but some general observations can be made. 

Choice of Basis Sets. The first requirement of a basis 
set for transition metal calculations is that it give ac­
curate atomic term separations. The relative energies 
of the 3d"4s2 and 3d"+14s configurations of Cu and Cr 
are given in Table XIII for Clementi's best minimum 
basis set atom (BA MBS), the present basis set (MBS + 
double 3d), the truncated Hartree-Fock basis of 
Claydon and Carlson,la and Clementi's near-Hartree-
Fock results.113 Although for Cu the term separation 
for our basis set has the wrong sign, the size of the error 
is greatly reduced from its BA MBS value and is quite 
close to Claydon and Carlson's truncated Hartree-
Fock value. We have chosen to add to the free-atom 
basis a 4p orbital chosen to minimize the ground-state 
atomic energy. Caution must therefore be exercised 
in discussing any "promotion" of electrons into this 
4p orbital, since it does not have the spatial character­
istics of an occupied 4p Hartree-Fock AO. Our basis 
set is then very similar to that used by Carlson and 
Moser in their later transition metal oxide calculations.213 

The above type of basis set has been used for calcula­
tions on the diatomic hydrides from FeH to GeH. 
Experimental internuclear distances26 were used for 
all molecules except for FeH, for which R = 2.84 was 
chosen, a valence orbital exponents (e.g., 3d, 3d', 4s 
and 4p) have been optimized for CoH, CuH, and GaH 
(Table XIV). Stevenson3 has reported an optimized 

Table XIV. Results of <r-Exponent Optimization 
for CoH, CuH, and GaH" 

R = 2.9132 
1Z 

D" = 3.69 

R = 2.766 
1 S 

Db = 4.30 

J? = 3.156 
1S 

D" = 0.72 

4s 
4p 
3d 
3d' 
H Is 

E = 

4s 
4p 
3d 
3d' 
H Is 

E = 

4s 
4p 
3d 
3d' 
H Is 

E = 

Free atom 
f. AT(Z1HIs) 

CoH 
1.484 1.138 
5.235 0.909 
6.370 1.174 
2.720 0.832 
1.0 

-1379.9871 

CuH 
1.389 1.192 
3.250 0.865 
6.740 0.873 
2.710 0.703 
1.0 

-1637.2607 

GaH 
1.871 1.116 
1.625 1.141 
7.885 0.762 
3.493 0.549 
1.0 

-1921.2327 

Optimized 
molecular . 

Ti-

1.519 
5.025 
6.600 
2.630 
0.940 
E = -

1.555 
2.876 
6.824 
2.774 
0.936 
E = -

1.929 
1.720 
7.735 
0.435 
0.987 
E=-

K(i, H Is) 

1.433 
0.898 
1.130 
0.833 

-1379.9943 

1.200 
0.927 
0.830 
0.686 

-1637.2677 

1.117 
1.142 
0.746 
0.553 

-1921.2336 

" For all three molecules, setting the ir and S exponents to the 
<r optimized value raised the energy. b D = dipole moment 
(debyes). 

SCF wave function for CuH employing a single 3d and 
a single 4d function in the basis set. He found opti­
mum exponent values of 0.934, 1.729, and 2.5 for the 
H Is, Cu 4s, and Cu 4p orbitals, respectively. 

CoH, CuH, and GaH Exponent Optimizations. In 
Table XIV we note first that the H Is optimum exponent 
is less than 1.0 in all cases. Second, the 4s orbital is 
slightly expanded for CoH and CuH and contracted 
for GaH. The contraction of the 4s orbital is expected, 
since it is strongly bonding. The 4p orbitals in CoH 
and CuH expand, as expected, from their highly con­
tracted free-atom form in order to participate more 
strongly in the bonding. This expansion, however, is 
small, showing that for CoH and CuH the role of the 
4p in lowering the energy of the predominantly metal 

(26) G. Herzberg, "Spectra of Diatomic Molecules," Van Nostrand, 
Princeton, N. J., 1950. 
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GeO" 
GaF" 
ZnO" 
CuF" 
CuF6 

NiF" 
N i O 
CoF" 

G e O 
GaF* 
ZnO" 
CuF" 
CuF6 

NiF" 
NiO" 
CoF" 

1 
1 
1 
1 
1 

^3d,,T ,j*ot) 

.99 ,4 .00 ,4 .00 

.99 ,4 .00 ,4 .00 

.98 ,4 .00 ,4 .00 

.85 ,4 .00 ,4 .00 

.81 ,4 .00 ,4 .00 
0 .38 ,4 .00 ,4 .00 
0 .022,4 .00 ,4 .00 
1 

2s, 3s 

0.80 
0.80 
0.80 
0.80 
0.79 
0.80 
0.80 
0.79 

.25 ,4 .00 ,2 .00 

P(4s) 

1.79 
1.83 
1.80 
0.84 
0.85 
1.20 
1.70 
1.47 

POd"*) = P3 d + P3d< 

i r i " -

2s, 4s 3s, 4s 

0.50 0.68 
0.49 0.66 
0.48 0.63 
0.48 0.62 
0.49 0.64 
0.48 0.64 
0.48 0.64 
0.48 0.65 

3p, 4p 

0.65 
0.64 
0.98 
0.85 
0.80 
0.98 
0.98 
0.98 

3d, 

0.96, 
0.95, 
0.95, 
0.93, 
0.94, 
0.92, 
0.90, 
0.93, 

A 
P(4p,,, 

0.76, 1 

•) 
.14 

0.59,0.35 
- 0 . 4 4 , -

0 .13,0 
0.14,0 

- 0 . 3 9 , -
- 0 . 4 1 , -
- 0 . 3 9 , -

B 

3dff,^'{ 

0.96,0.96 
0.95,0.95 
0.95,0.95 
0.85,0.94 
0.81,0.94 
0.98,0.95 
0.95,0.95 
0.95,0.95 

•0.88 
.23 
.22 
-0.76 
-0.81 
-0.78 

L 2s, 4s 

1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 

03 
01 
03 
11 
10 

.02 
,06 
,05 

P(L 2s) 

1.94 
1.96 
2.00 
1.98 
1.97 
1.99 
2.00 
1.99 

L 2s, 4p 1 

1.13 
1.11 
0.68 
0.66 
0,81 
0.61 
0.65 
0.59 

P(L 2p,,T) 

1.53,2.88 
1.64, 3.68 
0 .22,4 .00 
1.31, 3.99 
1.32, 3.98 
1.43, 4.X)O 
0.28,4 .00 
1.30,4.00 

L 2s, 3d' 

0.50 
0.46 
0.47 
0.66 
0.64 
0.59 
0.61 
0.63 

L 2p, 4s L 2p, 4p 

1.00 
0.89 
1.03 
1.33 
1.18 
0.87 
1.15 
1.03 

1.13 
1.02 
0.75 
0.62 
0.70 
0.70 
0.70 
0.69 

R 

3.118 
3.354 
3.685 
3.294 

3.781 
3.591 
3.572 

L2p, 3d' 

0.51 
0.46 
0.49 
0.61 
0.61 
0.80 
0.48 
0.76 

» Free-atom exponent. h Optimized 4p„ and adjusted 4s, 3d, and 3d'. 

3p MO's is much more important than its role in the 
bonding with H. In GaH the 4p contracts slightly 
and is strongly bonding. The changes in the 3d ex­
ponents are small and show no discernible pattern. 
The effect of the 3d optimization upon the molecular 
energy is also small (less than 0.0002 au for GaH). 
The optimized 3d and 3d' exponents for CuH are much 
closer to the optimum Cu 3d10 4s value than they are 
to the Cu 3d94s2 (f,d = 7.02, fM, = 3.00). 

An SCF calculation on CuH, in which a H 2p or­
bital was added to the basis set and optimized, was per­
formed to see if increased variational freedom on hy­
drogen would significantly change the results. The 
energy is —1637.27307 au, a lowering of 0.0054 au, 
and the virial ratio is 1.002. The orbital populations 
are 4s 0.261, 4p 0.007, 3d, 1.880, H Is 1.481, H 2p 
0.045, and the dipole moment changes from 4.30 to 
4.18 D. The optimized exponents are 1.407 and 1.325 
for the CT and T components of the H 2p, respectively. 
The two-center A"s for H 2p are quite high. All of 
the GAOP's in the MO's for the H 2p orbital are less 
than 0.03, and the largest contributions are in v orbitals, 
suggesting that electron density in the 3d and 4p IT'S 
is attracted to the H 2p„. An uncoupled Hartree-
Fock perturbation theory calculation of the 1H shield­
ing in this molecule shows that the inclusion of H 2p 
is not critically important for this property.17 We 
shall therefore continue to use only the H Is function, 
with a standard exponent of 1.0. The choice of ex­
tra functions on the metal was investigated by adding 
and attempting to optimize a second 4p orbital (4p') 
of low exponent. Contrary to our hope, the energy 
decreased continuously as the exponent of this orbital 
was increased. In CuH the 4p ' participation in the 
bonding was in all cases very small compared to that 
found for 4p in GaH. In later polyatomic calculations, 
we hope to test a diffuse 4p function in the basis set, 
partly because of the importance attached to the 4p 
function in earlier EH calculations.27 

(27) S. S. Zumdahl and R. S. Drago, /. Amer. Chem. Soc, 90, 6669 
(1968). 

Our optimizations show that the exponents of the 
3d, 3d', and 4s orbitals do not change greatly upon 
hydride formation, that low values for T H Is are ap­
propriate, and that the optimized 4p exponent, although 
lower than the free-atom value, is still quite high. The 
last result is consistent with Mulliken's assertion that 
excited orbitals should be "shrunken" in order to ap­
proximate the size of the occupied orbitals with which 
they mix.28 

We also found that the interpolation of optimized 
exponents for the hydrides of Ni, Zn, and Ge from the 
three optimized results produced significant energy 
lowerings, indicating consistency across the series. 
Results for these hydrides are given in ref 15. 

SCF Calculations on Oxides and Fluorides. SCF 
calculations were performed for GeO, GaF, ZnO, 
CuF, NiO, CoF, and NiF. Distances were bond 
distances for the diatomic molecules where avail­
able16 and were taken from solid compounds in other 
cases, and are listed in Table XVA. GeO, GaF, GaN, 
ZnO, and CuF are closed shells and the electron con­
figurations of NiF, NiO, and CoF were respectively 
8<r2cr4ir454, 8<;24(r454, and 9(724*-452. Ligand exponents 
were given their BA MBS valueslc and metal basis sets 
were of the type listed in Table XIV. The Cu 4p„ 
exponent was optimized in CuF at a value of 2.74, 
similar to the free-atom value of 3.25 and quite close 
to the optimized value of 2.88 in CuH. 

We shall discuss only the CuF, NiF, and GeO re­
sults in detail. In this discussion we shall add 3d and 
3d' populations and call the combination "3d". Or­
bital populations and K's for all calculations are given 
in Table XVB. In CuF (9v724ir464), orbitals 1-7(7 and 
1-2 7T are inner-shell orbitals, while 8tr is 84% 3d and 
14% F 2p and 9<x is 40% 4s, 50% F 2p, and 7% 3d. 
The 37T and Air orbitals are bonding and antibonding 
combinations of 3d and F 2p. The 1Ou orbital is the 
4s, F 2p antibonding orbital, with about 8% 3d par­
ticipation. Eigenvalues are 8a —0.477, 9<r —0.299, 
10a 0.144, 3TT -0.513, and U (3d,) -0.495. We find 

(28) R. S. Mulliken, /. Chem. Phys., 36, 3428 (1962). 
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Table XVI. NEMO III a's for Hydrocarbons 

SCF NEMO III NEMO III-SCF NEMO SCF 

C2H2 
C I s 
C 2s 
C 2 p , 
C 2pXll, 
H Is 

C I s 
C 2s 
C 2 p , 
C 2px,„ 
H Is 

C Is 
C 2s 
C 2 p , 
C2p* 
C2p» 
H Is 

H Is 
O Is 
O 2s 
0 2p, 
0 2px 

0 2p„ 

H Is 
N Is 
N 2s 
N2p 2 

N 2P111, 

- 1 1 . 2 9 4 
/ - 1 . 4 6 0 

- 0 . 7 4 9 
- 0 . 1 6 9 
- 0 . 5 6 4 

- 1 1 . 2 7 6 
- 1 . 4 4 9 
- 0 . 3 8 5 
- 0 . 3 5 4 
- 0 . 5 0 1 

-11 .284 
- 1 . 4 6 3 
- 0 . 5 4 9 
- 0 . 4 1 1 
- 0 . 1 4 6 
- 0 . 5 3 7 

- 0 . 5 6 3 
- 2 0 . 5 5 2 

- 2 . 3 5 0 
- 0 . 3 7 7 
- 0 . 3 5 3 
- 0 . 4 0 2 

- 0 . 5 4 2 
-15 .524 
- 1 . 8 7 4 
- 0 . 3 5 4 
- 0 . 3 3 1 

-11 .223 
- 1 . 4 9 7 
- 0 . 7 4 1 
- 0 . 1 5 7 
- 0 . 5 5 2 

- 1 1 . 1 2 4 
- 1 . 5 1 3 
- 0 . 3 3 7 
- 0 . 3 1 7 
- 0 . 5 0 4 

-11 .138 
- 1 . 5 1 1 
- 0 . 5 0 7 
- 0 . 3 7 3 
- 0 . 0 9 2 
- 0 . 5 3 5 

0.069 
- 0 . 0 3 7 

0.008 
0.012 
0.012 

C2H6 
0.132 

- 0 . 0 6 4 
0.048 
0.037 

- 0 . 0 0 3 

C2H4 
0.146 

- 0 . 0 4 8 
0.042 
0.039 
0.054 
0.002 

H2O Optimized MBS 
- 0 . 5 9 8 

- 2 0 . 4 3 5 
- 2 . 3 5 6 
- 0 . 3 6 2 
- 0 . 3 3 0 
- 0 . 3 7 1 

NH 3 

- 0 . 5 7 2 
-15 .373 
- 1 . 9 1 3 
- 0 . 3 2 5 
- 0 . 2 9 7 

+0.035 
- 0 . 1 1 7 
+0.006 
- 0 . 0 1 5 
- 0 . 0 2 3 
- 0 . 0 3 1 

Optimized MBS 
+0.030 
- 0 . 1 4 9 
+0.039 
- 0 . 0 2 9 
- 0 . 0 3 4 

F 2p„ 2s -0.199 -0.184 

F 2p8, 2s -0.018 -0.029 

F 2p*, 2s 0.138 0.106 

F 2p2, 2s -0.168 -0.130 

F sp„ 2s -0.158 -0.119 

that the Mulliken charges are small (#(Cu) = 0.284), 
that the two highest a and ir orbitals are not centered 
on either nucleus, that the d levels are, highest to lowest, 
a > 5 > 7T, and that the F 2s is almost completely filled 
and does not participate in the bonding. 

Results for CuF, in which the Cu 4p^ exponent was 
optimized and the valence exponents were given the 
optimized CuH values, are very similar. The energy 
lowering was 0.0387 au. The dipole moment increased 
from 2.85 to 3.25 D and the virial ratio -EjT changed 
from 1.0016 to 1.0010. Eigenvalues differed by less 
than 0.05 au except for the 10<r orbital which became 
primarily 4p„. and was lowered from 1.4539 to 0.9676 au. 

The orbital structure of the 8cr2<r47r454 configuration 
of NiF is somewhat different from that of CuF. The 
8cr orbital is now primarily 4s and F 2p, while the 9cr 
half-filled orbital contains 35% 3d,*, 46% 4s, and 19% 
F 2p. The LEMO (10a) has substantially more 3a%2 
character. The 3d orbital populations are a 0.46, 
7T 3.92, 5 4.0 and the Ni atom has a Mulliken charge of 
+ 0.42. Eigenvalues are: 9<r -0.205, 10<r 0.233, 3ir 
(3d,) -0.482, and 15 (3d{) -0.410. 

In both CuF and NiF we find the d-orbital ordering 
a > 5 > ir, with substantial stabilization of the 3d?rby 
bonding with the F 2pir. In NiF the a orbitals with 
large 3d contributions are half-filled or unfilled, while 
the 3d„ orbital in CuF is only 0.018 au above the 5 
orbital and is completely filled. The 3d population 
for NiF is 8.38 and that for CuF is 9.85, little different 
from the atomic values. 

The population analysis for GeO shows an oxygen 
charge of —0.346 electron, with a large 4p, F 2p overlap 
population and substantial charge transfer from Ge 4p 

to F 2p. The HFMO (10<r) is a bonding orbital in­
volving the 4s, 4p and O 2p, while the highest occupied 
ir orbital (Air) is primarily F 2p,„ with about 25% 4p, 
character. Eight <r, 9<r, 10<r, and 4ir are not localized on 
either center (zGe 9<r = 1.6735, lOo- = 0.3585, 4ir = 
2.3345, 8cr = 2.7231, Re = 3.118). The la (e = -
1.5698), 3 T (e = -1.5603), and 15 («• = -1.5646) are 
the 3d a, ir, and 5 orbitals. The charge on Ge is due 
to the loss of electrons from the 4s (0.21) and the 4p 
(0.13). The total energy is -2147.1959 au, giving a 
binding energy of 0.0312 au, -EjT = 0.9993, and a 
dipole moment of 0.8361 D. The 2C K's for F 2s and 
F 2p„>ir interactions with the Ge 4s, 4p, and 3d' orbitals 
are quite similar. For the ir and 5 orbitals little sym­
metry separation is found for the K's (K3A>:id a 0.9600, 
•K 0.9602, 0.9602). GeO shows substantial covalency 
and important contributions of 4s, 4p, and F 2p to 
bonding. F 2s participates little in the bonding and 
has only small overlap populations. 

Table XV gives the orbital populations and K's for all 
calculations. We see that the one-center .K's are essen­
tially constant, except for those involving the 4p orbital, 
and that even here calculations employing similar ex­
ponents give similar results. Two-center K's show some­
what more invariability, but K's for the larger interactions 
are still remarkably consistent. The /Ts involving the 
metal 4p orbital do seem to vary with exponent and orbital 
population. The K's do not show any clear dependence 
on overlap, overlap population, or internuclear distance. 

Appendix C. NEMO III Results for Small Molecules 

Comparison with SCF Results. We present a 's 
calculated using the proposed method and ab initio 
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Table XVII. C3H4 Results for NEMO I, II, and III 

lA:2;«;e; 
T 
2e (HFMO) 
Ie 
7B1 

6a i 
5a, 
Q(Cl) 
Q(C2) 
G(C3) 
C(H4) 
Q(H5, 6, 7) 
Total energy 
- E / T 

SCF 

- 3 9 . 1 0 
115.071 
- 0 . 3 8 
- 0 . 5 9 
- 0 . 6 0 
- 0 . 7 0 
- 0 . 9 4 
- 0 . 2 2 6 
- 0 . 0 3 7 
- 0 . 4 0 6 

0.180 
0.163 

-115.597 
1.0044 

NEMO 
I 

- 3 9 . 0 6 
114.91 
- 0 . 3 6 
- 0 . 6 2 
- 0 . 6 3 
- 0 . 7 5 
- 0 . 9 2 
- 0 . 5 7 
+ 0 . 2 2 
- 0 . 0 4 
+ 0 . 2 1 
+ 0 . 0 6 

NEMO 
II 

- 3 8 . 9 5 
115.19 
- 0 . 3 5 
- 0 . 5 8 
- 0 . 5 5 
- 9 . 7 1 
- 0 . 9 1 

NEMO 
111« 

- 3 8 . 9 2 
115.04 
- 0 . 3 9 
- 0 . 5 7 
- 0 . 6 0 
- 0 . 7 3 
- 1 . 0 0 
- 0 . 2 0 6 
- 0 . 0 5 8 
- 0 . 3 4 2 

0.143 
0.154 

-115.248 
1.001! 

F 0 - 2 0 SCF NEMO C Is C 2s C 2p CH 
IC 2p2, IC 2s - 0 . 1 8 6 - 0 . 2 1 0 0.95 0.22 0.50 0.22 
2C2p*, 2C2s 0.129 0.155 0.97 0.32 0.56 
3C2pz , 3C2s 0.056 0.034 0.98 0.42 0.62 0.26 

" General method. 

SCF density matrices and compare them with ab initio 
SCF results for C2H2, C2H6, and C2H4 in Table XVI. 
We find that a's for H are given accurately, as are aniso-

The Arrhenius preexponential factors AQ for primary 
hydrogen isotope effects, according to the equation 

In (kH/kD) = In AQ + BjT (1) 

have been used for the detection of quantum mechanical 
tunneling in reactions involving, primarily, proton or 
hydrogen-atom transfer.2 Bell, using a very simple 
model for a hydrogen-transfer reaction, predicted that 
values of AQ should, in the absence of tunneling, be re­
stricted to the range 0.5 < AQ < 2'A and usually close to 

(1) Supported in part by the U. S. Atomic Energy Commission under 
Contract AT(30-l)-3663. 

(2) See the review by E. F. Caldin, Chem. Rev., 69, 135 (1969). 

tropies for C 2p a's. Errors for CH2 and CH3 carbons 
are similar in this series of compounds. NEMO III 
eigenvalues and orbital populations for C3H4 are com­
pared with SCF results and with NEMO I and II results 
in Table XVII. The zero-overlap algorithm gives 
reasonable results for all four compounds. We also 
wish to perform calculations in which the ligands of 
the metal atom are H2O and NH3, and have therefore 
calculated NEMO III a's for H2O and NH3. The re­
sults (Table XVI) are similar to those for hydrocarbons. 

Appendix D 

The derivation of energy differences for transitions of 
filled and half-filled b l g is as follows: 

£(2Blg) = 2fft + H(blg) + Ju + 2J(i, b ^ - K{i, blg) 

E(H) = Ht + 2/7(blg) + /(b l g , bib) + 

2/(/, blb) - K(i, blg) 

AE = i/(blg) - Ht + J(blb, blb) - Ju 

ehl* = H(blg) + 2J(i, big) - K(i, blg) 

t r = Ht + Ju + /(/, blg) - 0.5K(i, blg) 

Ae = H{bH) = H{ - JH + J(i, blg) - 0.5*(/, blg) 

E = Ae + J(blg, blg) - J(U K) + 0.5tf(/, blg) 

1.0.3 Experimental values4 of AQ significantly lower 
than 0.5 for primary hydrogen kinetic isotope effects 
have been interpreted as due to the operation of quan­
tum mechanical tunneling in the reactions.2 

(3) R. P. Bell, "The Proton in Chemistry," Cornell University Press, 
Ithaca, N. Y., 1959, Chapter XI. 

(4) Most reported experimental values of AQ were determined by tak­
ing the ratio of the individual Arrhenius preexponential factors for the 
protium and deuterium reactions, AQ = AuIAv, whereas in this work we 
determine AQ directly according to eq 1. If the data fit the Arrhenius 
equation exactly, the two methods yield identical results. However, for 
the room temperature region, even computer-generated kinetic isotope 
effect data are not fit exactly by eq 1. We have compared the two 
methods, using actual experimental data for several reactions, and have 
found differences in the resulting corresponding AQ values of less than 
0.05 unit. 
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Abstract: "Exact" model-reaction calculations are used to determine the lower limit to the Arrhenius preexpo­
nential factors, AQ, for primary deuterium kinetic isotope effects in the harmonic approximation and in the absence 
of quantum mechanical tunneling. Attempts are made to force the AQ values as low as possible solely through 
adj ustments in the force constant changes, at the isotopic positions, between reactants and transition states. Values 
of AQ lower than ~0.7 could not be achieved without making the models so mechanistically unreasonable as to 
render the results meaningless. A more conservative estimate of the lower limit, viz., AQ > 0.5, is obtained by 
considering the lowest value found for the Arrhenius preexponential factor of the purely quantum mechanical con­
tribution to a kinetic isotope effect to be the lower limit to the preexponential factor of the entire isotope effect. 
This conclusion is in excellent agreement with a prediction made by Bell on the basis of a less rigorous theoretical 
treatment and lends support to the common practice of interpreting experimental values of AQ significantly lower 
than 0.5 as due to the operation of tunneling in the reactions. 
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